bilangan desimal
bilangan desimal adalah bilangan berbasis 10 terdiri dari kombinasi angka 0 s.d. 9, bilangan ini paling umum dijumpai dan dijadikan sebagai bilangan yang umum digunakan pada software yang berinteraksi langsung dengan manusia.
aritmatika bilangan desimal
a. penjumlahan
penjumlahan bilangan desimal tentunya sudah kita semua kenal (karena sejak SD sudah diajarin )
misalnya:
123sy rasa sudah jelas jadi tidak perlu dijelaskan panjang lebar, heeee
356
_____ +
479
b. pengurangan
479
123
____ +
356
c. perkalian
25konversi bilangan desimal
10
___ x
00
25
______ +
250
a. konversi desimal ke biner
misalnya 98 desimal akan diubah ke biner:
98/2 = 49, sisa 0 (akhir)
49/2 = 24, sisa 1
24/2 = 16, sisa 0
12/2 = 6, sisa 0
6/2 =3, sisa 0
3/2 =1, sisa 1
1/2=0, sisa 1 (awal)
sisa dituliskan dari bawah menjadi: 9810 = 11000102
contoh lainnya yaitu 98,375 desimal akan diubah menjadi biner:
98/2 = 49, sisa 0b. konversi desimal ke octal (basis 8 )
49/2 = 24, sisa 1
24/2 = 16, sisa 0
12/2 = 6, sisa 0
6/2 =3, sisa 0
3/2 =1, sisa 1
1/2=0, sisa 1
0,375 x 2=0,75, angka disebelah kiri koma adalah 0
0,75 x 2=1,5, angka disebelah kiri koma adalah 1
0,5 x 2=1,0 angka disebelah kiri koma adalah 1
jadi 98,37510=1100010,0112
proses konversi sama dengan konversi ke biner hanya saja pembaginya adalah 8, misalnya 1368 desimal:
1368/8 = 171, sisa 0 (akhir)contoh lainnya yaitu 1368,25 desimal:
171/8 = 21, sisa 3
21/8 = 2, sisa 5
2/8 = 0, sisa 2 (awal)
jadi 136810 = 25308
1368/8 = 171, sisa 0c. konversi desimal ke hexa (basis 16)
171/8 = 21, sisa 3
21/8 = 2, sisa 5
2/8 = 0, sisa 2
0,25 x 8 = 2,0, bilangan disebelah kiri koma adalah 2
jadi 1368,2510 = 2530,28
proses ini sama saja dengan proses sebelumnya namun bilangan pembagi atau pengali adalah 16,misalnya 19006 desimal:
19006/16 = 1187, sisa 14 = E (akhir)2. Bilangan Biner
1187/16 = 74, sisa 3
74/16 = 4, sisa 10 = A
4/16 = 0, sisa 4 (awal)
jadi 1900610 = 4A3E16
bilangan biner adalah bilangan dengan basis 2, mempunyai simbol angka (numerik) sebanyak 2 buah simbol, yaitu 0 dan 1. Bilangan biner ini dapat pula dikatakan sebagai bilangan mesin (bahasa mesin), karena dalam dunia komputer dan digital bilangan biner ini dapat direpresentasikan sebagai saklar transistor on atau off.
aritmatika bilangan biner
a. penjumlahan
penjumlahan bilangan biner tentu saja berbeda dengan penjumlahan bilangan desimal sebelumnya, ada beberapa aturan dalam penjumlahan bilangan biner, yaitu:
- 0 + 0 = 0
- 0 +1 = 1 + 0 = 1
- 1 + 1 = 10 (1 akan berupa carry bila penjumlahan belum selesai)
- 1 + 1 +1 = 11 (1 akan berupa carry bila penjumlahan belum selesai)
contoh lainnya:
0 komentar:
Posting Komentar